Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116507, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565059

RESUMO

Thioredoxin reductase 1 (TrxR1) has emerged as a promising target for cancer therapy. In our previous research, we discovered several new TrxR1 inhibitors and found that they all have excellent anti-tumor activity. At the same time, we found these TrxR1 inhibitors all lead to an increase in AKT phosphorylation in cancer cells, but the detailed role of AKT phosphorylation in TrxR1 inhibitor-mediated cell death remains unclear. In this study, we identified the combination of AKT and TrxR1 inhibitor displayed a strong synergistic effect in colon cancer cells. Furthermore, we demonstrated that the synergistic effect of auranofin (TrxR1 inhibitor) and MK-2206 (AKT inhibitor) was caused by ROS accumulation. Importantly, we found that ATM inhibitor KU-55933 can block the increase of AKT phosphorylation caused by auranofin, and exhibited a synergistic effect with auranofin. Taken together, our study demonstrated that the activation of ATM/AKT pathway is a compensatory mechanism to cope with ROS accumulation induced by TrxR1 inhibitor, and synergistic targeting of TrxR1 and ATM/AKT pathway is a promising strategy for treating colon cancer.

2.
Chem Sci ; 15(13): 4853-4859, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38550675

RESUMO

Excellent luminescence properties and unique chiral structures enable nanoclusters to be a novel class of circularly polarized luminescence (CPL) materials, and their precise structures facilitate the clarification of structure-activity relationships. However, efficiently preparing nanoclusters with CPL properties is still a great challenge. In this work, the luminescent properties as well as the molecular symmetry were simultaneously manipulated to transform the centrosymmetric Au14Cd1 into a chiral Au12Cd2 nanocluster, which has CPL properties. In detail, Cd doping and chiral-ligand exchange were performed simultaneously on the Au14Cd1 nanocluster to realize its photoluminescence enhancement and chiral-framework construction by increasing the alloying degree which is defined as deep-alloying and chiral ligand induction at the same time, resulting in the formation of an Au12Cd2 nanocluster with CPL properties. Further investigations revealed an increased alloying degree in the structure-maintained M6 kernel of Au12Cd2, which results in a 15-fold enhancement in quantum yield.

3.
Int J Biol Sci ; 20(1): 249-264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164168

RESUMO

Lung cancer is one of the most lethal diseases in the world. Although there has been significant progress in the treatment of lung cancer, there is still a lack of effective strategies for advanced cases. Lenvatinib, a multi-targeted tyrosine kinase inhibitor, has achieved much attention due to its antitumor properties. Nevertheless, the use of lenvatinib is restricted by the characteristics of poor efficacy and drug resistance. In this study, we assessed the effectiveness of lenvatinib combined with thioredoxin reductase 1 (TrxR1) inhibitors in human lung cancer cells. Our results indicate that the combination therapy involving TrxR1 inhibitors and lenvatinib exhibited significant synergistic antitumor effects in human lung cancer cells. Moreover, siTrxR1 also showed significant synergy with lenvatinib in lung cancer cells. Mechanically, we demonstrated that ROS accumulation significantly contributes to the synergism between lenvatinib and TrxR1 inhibitor auranofin. Furthermore, the combination of lenvatinib and auranofin can activate endoplasmic reticulum stress and JNK signaling pathways to achieve the goal of killing lung cancer cells. Importantly, combination therapy with lenvatinib and auranofin exerted a synergistic antitumor effect in vivo. To sum up, the combination therapy involving lenvatinib and auranofin may be a potential strategy for treating lung cancer.


Assuntos
Neoplasias Pulmonares , Tiorredoxina Redutase 1 , Humanos , Tiorredoxina Redutase 1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Auranofina/farmacologia , Auranofina/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Morte Celular
4.
Cell Death Discov ; 9(1): 375, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833257

RESUMO

Colon cancer is a major cause of cancer-related death. Despite recent improvements in the treatment of colon cancer, new strategies to improve the overall survival of patients are urgently needed. Heat shock protein 90 (HSP90) is widely recognized as a promising target for treating various cancers, including colon cancer. However, no HSP90 inhibitor has been approved for clinical use due to limited efficacy. In this study, we evaluated the antitumor activities of HSP90 inhibitors in combination with piperlongumine in colon cancer cells. We show that combination treatment with HSP90 inhibitors and piperlongumine displayed strong synergistic interaction in colon cancer cells. These agents synergize by promoting ER stress, JNK activation, and DNA damage. This process is fueled by oxidative stress, which is caused by the accumulation of reactive oxygen species. These studies nominated piperlongumine as a promising agent for HSP90 inhibitor-based combination therapy against colon cancer.

5.
Org Biomol Chem ; 21(27): 5643-5647, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37377436

RESUMO

Alkyltin fluoride is a frequently used electrophilic stannylation reagent via the cleavage of the Sn-F bond in traditional organic synthetic chemistry. Herein, we report the unprecedented copper-catalyzed aminoalkylation of maleimides using alkyltin fluoride as alkylating reagent through cleavage of the C-Sn bond via a radical pathway. Excellent functional group tolerance, use of O2 as green oxidant and late-stage modification of some drug intermediates are the standout features of the current toolbox. Mechanistic studies reveal that alkyltin fluorides are capable of producing alkyl radicals in a Cu/O2 catalytic system.

6.
Inorg Chem ; 61(17): 6493-6499, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35436089

RESUMO

Introduction of chiral ligands has been regarded as an effective strategy to obtain nanoclusters with optical purity. However, how the chiral ligands work is still unclear due to the lack of structural comparison between racemic nanoclusters and the corresponding optically active ones. In this work, three structurally related Au24Cd2 nanoclusters, including one racemic and two homochiral nanoclusters, were synthesized, and their crystal structures were characterized using single-crystal X-ray crystallography (SC-XRD). Based on their crystal structures, the origin of the chirality in Au24Cd2 was found to be the twist of the kernel and the chiral arrangement of the metal-ligand surface. Au24Cd2 protected with chiral ligands exhibits a more twisted kernel than the racemic one. Therefore, the chirality of chiral diphosphine was found to transfer from the ligands to the metal-ligand interface and then to the metal core, inducing its distortion to produce enhanced chirality. In addition, the optical properties including optical absorption and circular dichroism of these structurally related Au24Cd2 nanoclusters were compared.

7.
Oxid Med Cell Longev ; 2022: 6324292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251480

RESUMO

Ovarian cancer is one of the fatal gynecological cancers around the world. Cisplatin is the first-line chemotherapy drug for the clinical treatment of ovarian cancer. However, many patients with ovarian cancer are still suffering from resistance to cisplatin. Therefore, the new drug combinations or treatment strategies for ovarian cancer are urgently needed. Glaucocalyxin B (GLB), a diterpenoid isolated from the aerial parts of Rabdosia japonica, has shown antitumor activity in some tumors. However, the mechanisms by which GLB inhibits ovarian cancer remain unclear. In the present study, we showed that GLB potently inhibits ovarian cancer cell growth in a dose-dependent manner. Furthermore, we found that GLB has a notably synergistic antitumor effect with cisplatin. Mechanistically, we found that GLB enhances the sensitivity of ovarian cancer cells to cisplatin via increasing reactive oxygen species (ROS) levels, the phosphorylation of c-Jun N-terminal kinase (JNK), and DNA damage. Interestingly, a synergistic inhibitory effect of GLB with cisplatin was also observed in the cells which were resistance to cisplatin. Together, these data suggest that GLB can sensitize ovarian cancer cells to cisplatin by increasing ROS levels.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Isodon/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Ovarianas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Ovarianas/patologia , Espécies Reativas de Oxigênio/metabolismo
8.
Front Oncol ; 12: 813854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145916

RESUMO

Colon cancer is one of the most common cancer in the world. Doxorubicin (DOX) is a classical anti-tumor drug which widely used in treatment of cancers, however, high toxicity limited its further clinical application. Thus, it is urgent to find new drugs with low toxicity and high efficiency to treat colon cancer. Isoalantolactone (IATL), an isomeric sesquiterpene lactone isolated from the plant of inula helenium, has been reported to have anti-cancer activity against a variety of cancer cells. However, the function of IATL in colon cancer remains unclear. Here, we demonstrated that IATL inhibited colon cancer cell growth by increasing cellular reactive oxygen species (ROS) production. Further study showed that ROS accumulation contributed to DNA damage and JNK signaling pathway activation. In addition, we found that IATL markedly enhanced DOX-induced cell cytotoxicity in colon cancer cells. IATL in combination with DOX significantly increased the ROS production, induced DNA damage and activated JNK signaling pathway. Taken together, our data suggested that combined treatment with IATL and DOX may serve as a potential therapeutics for colon cancer.

9.
Theranostics ; 11(9): 4335-4350, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754064

RESUMO

Background: Cancer is a leading cause of death worldwide. Extensive research over decades has led to the development of therapies that inhibit oncogenic signaling pathways. The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in the development of many cancers. Several mTOR inhibitors are approved for the treatment of cancers. However, the anticancer efficacies of mTOR inhibitor monotherapy are still limited. Methods: Western blot was used to detect the expression of indicated molecules. Thioredoxin reductase (TrxR) activity in cells was determined by the endpoint insulin reduction assay. Immunofluorescence staining was used to analyze precise location and expression of target proteins. Nude mice were used for xenograft tumor models. Results: We identified a synergistic lethal interaction of mTOR and TrxR inhibitors and elucidated the underlying molecular mechanisms of this synergism. We demonstrated that mTOR and TrxR inhibitors cooperated to induce cell death by triggering oxidative stress, which led to activation of autophagy, endoplasmic reticulum (ER) stress and c-Jun N-terminal Kinase (JNK) signaling pathway in cancer cells. Remarkably, we found that auranofin (AF) combined with everolimus significantly suppressed tumor growth in HCT116 and SGC-7901 xenograft models with no significant signs of toxicity. Conclusion: Our findings identify a promising therapeutic combination for cancer and has important implications for developing mTOR inhibitor-based combination treatments.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Animais , Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HCT116 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos
10.
Front Cell Dev Biol ; 8: 580517, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072762

RESUMO

Colon cancer is one of the leading causes of cancer-related death in the world. The development of new drugs and therapeutic strategies for patients with colon cancer are urgently needed. Isodeoxyelephantopin (ESI), a sesquiterpene lactone isolated from the medicinal plant Elephantopus scaber L., has been reported to exert antitumor effects on several cancer cells. However, the molecular mechanisms underlying the action of ESI is still elusive. In the present study, we found that ESI potently suppressed cell proliferation in human colon cancer cells. Furthermore, our results showed that ESI treatment markedly increased cellular reactive oxygen species (ROS) levels by inhibiting thioredoxin reductase 1 (TrxR1) activity, which leads to activation of the JNK signaling pathway and eventually cell death in HCT116 and RKO cells. Importantly, we found that ESI markedly enhanced cisplatin-induced cytotoxicity in HCT116 and RKO cells. Combination of ESI and cisplatin significantly increased the production of ROS, resulting in activation of the JNK signaling pathway in HCT116 and RKO cells. In vivo, we found that ESI combined with cisplatin significantly suppressed tumor growth in HCT116 xenograft models. Together, our study provide a preclinical proof-of-concept for ESI as a potential strategy for colon cancer treatment.

11.
Cell Oncol (Dordr) ; 42(6): 847-860, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31493144

RESUMO

PURPOSE: Oxaliplatin is one of the most commonly used chemotherapeutic agents in the treatment of various cancers, including gastric cancer. It has, however, a narrow therapeutic index due to its toxicity and the occurrence of drug resistance. Therefore, there is a pressing need to develop novel therapies to potentiate the efficacy and reduce the toxicity of oxaliplatin. Piperlongumine (PL), an alkaloid isolated from Piper longum L., has recently been identified as a potent agent against cancer cells in vitro and in vivo. In the present study, we investigated whether PL can potentiate the antitumor effect of oxaliplatin in gastric cancer cells. METHODS: Cellular apoptosis and ROS levels were analyzed by flow cytometry. Thioredoxin reductase 1 (TrxR1) activity in gastric cancer cells or tumor tissues was determined using an endpoint insulin reduction assay. Western blotting was used to analyze the expression levels of the indicated proteins. Nude mice xenograft models were used to test the effects of PL and oxaliplatin combinations on gastric cancer cell growth in vivo. RESULTS: We found that PL significantly enhanced oxaliplatin-induced growth inhibition in both gastric and colon cancer cells. Moreover, we found that PL potentiated the antitumor effect of oxaliplatin by inhibiting TrxR1 activity. PL combined with oxaliplatin markedly suppressed the activity of TrxR1, resulting in the accumulation of ROS and, thereby, DNA damage induction and p38 and JNK signaling pathway activation. Pretreatment with antioxidant N-acetyl-L-cysteine (NAC) significantly abrogated the combined treatment-induced ROS generation, DNA damage and apoptosis. Importantly, we found that activation of the p38 and JNK signaling pathways prompted by PL and oxaliplatin was also reversed by NAC pretreatment. In vivo, we found that PL combined with oxaliplatin significantly suppressed tumor growth in a gastric cancer xenograft model, and effectively reduced the activity of TrxR1 in tumor tissues. Remarkably, we found that PL attenuated body weight loss evoked by oxaliplatin treatment. CONCLUSIONS: Our data support a synergistic effect of PL and oxaliplatin and suggest that application of its combination may be more effective for the treatment of gastric cancer than oxaliplatin alone.


Assuntos
Antineoplásicos/farmacologia , Dioxolanos/farmacologia , Oxaliplatina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Sinergismo Farmacológico , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Tiorredoxina Redutase 1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Int J Biol Sci ; 15(8): 1676-1684, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360110

RESUMO

Colon cancer is a malignant type of cancer with high prevalence and is one of the primary causes of cancer-related deaths. Oxaliplatin plays a significant role in the treatment of cancer, but the application of oxaliplatin is restricted due to its toxic side effects and drug resistance in clinical practice. Therefore, there is an urgent need for new strategies that can synergize with oxaliplatin for confronting colon cancer. Alantolactone (ALT), a natural sesquiterpene lactone, possesses antitumor properties in a number of cancer cell lines. In the present study, we investigated how ALT acts synergistically with oxaliplatin on human colorectal cancer HCT116 and RKO cells in vitro and in vivo. We observed that ALT strengthened the effect of oxaliplatin-induced growth restrain and apoptosis in HCT116 and RKO cells. It is through a mechanism concerning remarkable accumulation of intracellular reactive oxygen species (ROS) and activation of JNK and p38 MAPK signaling pathways. These changes ultimately induced apoptosis of HCT116 and RKO cells. Pretreatment of cells with the ROS reversal agent NAC significantly blocked the apoptosis induced by the combination treatment, and suppressed expression of JNK and p38 phosphorylation in HCT116 and RKO cells. In the xenograft model, the combination therapy displayed stronger antitumor activity compared with single agents. Immunohistochemistry of subsequent treatment tumors showed a significant decrease in proliferation as compared to either of the treatments alone. These results suggest that the combination treatment with ALT and oxaliplatin may become a potential therapeutic strategy for colon cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Lactonas/farmacologia , Oxaliplatina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos de Eudesmano/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Células HCT116 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
13.
Free Radic Biol Med ; 141: 93-102, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31176737

RESUMO

Colon cancer is one of the leading causes of cancer-related deaths. Chemotherapy has improved survival in patients with colon cancer, but has a narrow therapeutic window due to its toxicity. Therefore, novel therapies for colon cancer are urgently needed. We previously developed a curcumin analog WZ26 as an anti-cancer agent in pre-clinical evaluation. In the present study, we further explored the mechanism and target of WZ26 in colon cancer cells. Our results show that WZ26 targets thioredoxin reductase 1 (TrxR1) and increases cellular reactive oxygen species (ROS) levels, which results in the activation of JNK signaling pathway in human colon cancer cells. Furthermore, we found that WZ26 significantly enhances cisplatin-induced cell growth inhibition in colon cancer cells. WZ26 combined with cisplatin markedly increases the accumulation of ROS, and thereby induces DNA damage and activation of JNK signaling pathway. Pretreatment with antioxidant N-acetyl-l-cysteine (NAC) significantly abrogates the combined treatment-induced ROS generation, DNA damage and cell death. In addition, the activation of JNK signaling pathway prompted by WZ26 and cisplatin was also reversed by NAC pretreatment. In vivo, WZ26 combined with cisplatin significantly inhibits tumor growth in a colon cancer xenograft model. Remarkably, WZ26 attenuates the body weight loss evoked by cisplatin treatment. This study discloses a previously unrecognized mechanism underlying the biological activity of WZ26, and reveals that WZ26 and cisplatin combinational treatment might potentially become a more effective regimen in colon cancer therapy.


Assuntos
Cisplatino/farmacologia , Neoplasias do Colo/tratamento farmacológico , Curcumina/análogos & derivados , Curcumina/farmacologia , Sinergismo Farmacológico , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Redutase 1/antagonistas & inibidores , Acetilcisteína/farmacologia , Animais , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Cisplatino/administração & dosagem , Curcumina/administração & dosagem , Dano ao DNA , Células HCT116 , Humanos , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Piperazinas/administração & dosagem , Ressonância de Plasmônio de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Exp Clin Cancer Res ; 38(1): 207, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113439

RESUMO

BACKGROUND: Cisplatin is one of the most widely used chemotherapeutic agents, but its efficacy is limited by its side effects. Hence, it is of great significance to develop novel agents to synergize with cisplatin and decrease side effects. In our previous study, we demonstrated that WZ35, a novel curcumin analogue, exhibited potent anti-cancer effects in vitro and in vivo. Here, we investigated whether WZ35 synergize to potentiate cisplatin activity in gastric cancer cells. METHODS: Cell apoptosis and cellular ROS levels were analyzed by flow cytometry. TrxR1 activity in gastric cells or tumor tissues was determined by the endpoint insulin reduction assay. Western blot was used to analyze the levels of indicated molecules. Nude mice xenograft model was used to test the effects of WZ35 and cisplatin combination on gastric cancer cell growth in vivo. RESULTS: We found that WZ35 significantly enhanced cisplatin-induced cell growth inhibition and apoptosis in gastric cancer cells. Further mechanism study showed that WZ35 synergized the anti-tumor effects of cisplatin by inhibiting TrxR1 activity. By inhibiting TrxR1 activity, WZ35 combined with cisplatin markedly induced the production of ROS, activated p38 and JNK signaling pathways, and eventually induced apoptosis of gastric cancer cells. In vivo, WZ35 combined with cisplatin significantly suppressed tumor growth in a gastric cancer xenograft model, and effectively reduced the activity of TrxR1 in tumor tissues. Remarkably, WZ35 attenuated the body weight loss evoked by cisplatin treatment. CONCLUSION: This study elucidated the underlying mechanisms of synergistic effect of WZ35 and cisplatin, and suggest that such a combinational treatment might potentially become a more effective regimen in gastric cancer therapy.


Assuntos
Proliferação de Células/efeitos dos fármacos , Curcumina/análogos & derivados , Curcumina/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Tiorredoxina Redutase 1/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Curcumina/uso terapêutico , Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Free Radic Res ; 53(1): 104-114, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30668191

RESUMO

Thioredoxin reductase 1 (TrxR1) has emerged as a potential target for cancer therapy, because it is overexpressed in several types of cancers and associated with increased tumour growth and poor patient prognosis. Alantolactone (ALT), a natural sesquiterpene lactone originated from traditional folk medicine Inula helenium L., has been reported to exert antitumor activity in various tumours. However, the effect of ALT on human gastric cancer cells and its underlying mechanism remains unknown. In this study, we showed that ALT inhibited cell proliferation and induced cell apoptosis in gastric cancer cells. Mechanistically, our data found that ALT induced reactive oxygen species (ROS) production by inhibiting TrxR1 activity, resulting in the activation of p38 mitogen-activated protein kinase (MAPK) pathway and eventually cell apoptosis in gastric cancer cells. And the effects of ALT were reversed by pre-treatment with NAC (a scavenger of ROS). Further investigation revealed that ALT displayed synergistic lethality with erastin against gastric cancer cells, which demonstrating combined inhibition of TrxR1 and glutathione (GSH) leads to a synergistic effect in gastric cancer cells. More importantly, ALT treatment markedly reduced the activity of TrxR1 in vivo and inhibited the growth of gastric cancer xenografts without exhibiting significant toxicity. Taken together, these findings suggest that ALT may be used as a novel therapeutic agent against human gastric cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Lactonas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos de Eudesmano/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Tiorredoxina Redutase 1/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Inula/química , Lactonas/química , Lactonas/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Sesquiterpenos de Eudesmano/química , Sesquiterpenos de Eudesmano/isolamento & purificação , Neoplasias Gástricas/metabolismo , Relação Estrutura-Atividade , Tiorredoxina Redutase 1/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...